For Better Performance Please Use Chrome or Firefox Web Browser

Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach

Abstract

This study proposed a concurrent multiscale method to model damage in clay/epoxy nanocomposites. The method uses a nonlocal damage formulation to regularize the damage model. The multiscale method used, is based on the Arlequin method which couples two overlapping scales using the Lagrange multipliers method. Since the method blends the energies of two scales in a so called “handshake domain”, the spurious wave reflection from the coupling region is minimum. Hence the method is appropriate for the current dynamic problem. To show the suitability and accuracy of the proposed method, a clay/epoxy nanocomposite beam under dynamic loading is simulated using two different approaches: a full fine scale model and a multiscale model were employed. Also, a comparison between the results proves that the proposed nonlocal multiscale method can accurately predict the damage phenomena inside the clay/epoxy nanocomposites with minimal computational costs. The method presented here is also applicable to a range of related physical problems.

Keywords

Multiscale, Arlequin method, Nanocomposites, Nonlocal damage, Dynamic loading

Journal Papers
Month/Season: 
July
Year: 
2016

تحت نظارت وف بومی